Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Open Forum Infect Dis ; 9(8): ofac406, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2018039

ABSTRACT

Background: We evaluated clinical effectiveness of regdanvimab (CT-P59), a severe acute respiratory syndrome coronavirus 2 neutralizing monoclonal antibody, in reducing disease progression and clinical recovery time in patients with mild-to-moderate coronavirus disease 2019 (COVID-19), primarily Alpha variant. Methods: This was phase 3 of a phase 2/3 parallel-group, double-blind, randomized clinical trial. Outpatients with mild-to-moderate COVID-19 were randomized to single-dose regdanvimab 40 mg/kg (n = 656) or placebo (n = 659), alongside standard of care. The primary endpoint was COVID-19 disease progression up to day 28 among "high-risk" patients. Key secondary endpoints were disease progression (all randomized patients) and time to recovery (high-risk and all randomized patients). Results: Of 1315 randomized patients, 880 were high risk; the majority were infected with Alpha variant. The proportion with disease progression was lower (14/446, 3.1% [95% confidence interval {CI}, 1.9%-5.2%] vs 48/434, 11.1% [95% CI, 8.4%-14.4%]; P < .001) and time to recovery was shorter (median, 9.27 days [95% CI, 8.27-11.05 days] vs not reached [95% CI, 12.35-not calculable]; P < .001) with regdanvimab than placebo. Consistent improvements were seen in all randomized and non-high-risk patients who received regdanvimab. Viral load reductions were more rapid with regdanvimab. Infusion-related reactions occurred in 11 patients (4/652 [0.6%] regdanvimab, 7/650 [1.1%] placebo). Treatment-emergent serious adverse events were reported in 5 of (4/652 [0.6%] regdanvimab and 1/650 [0.2%] placebo). Conclusions: Regdanvimab was an effective treatment for patients with mild-to-moderate COVID-19, significantly reducing disease progression and clinical recovery time without notable safety concerns prior to the emergence of the Omicron variant. Clinical Trials Registration: NCT04602000; 2020-003369-20 (EudraCT).

2.
Open forum infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-1998943

ABSTRACT

Background We evaluated clinical effectiveness of regdanvimab (CT-P59), a SARS-CoV-2 neutralizing monoclonal antibody, in reducing disease progression and clinical recovery time in patients with mild-to-moderate COVID-19, primarily alpha variant. Methods This was phase 3 of a phase 2/3 parallel-group, double-blind, randomized clinical trial. Outpatients with mild-to-moderate COVID-19, were randomized to single dose regdanvimab 40 mg/kg (n = 656) or placebo (n = 659), alongside standard-of-care. Primary endpoint: COVID-19 disease progression (clinical symptoms requiring hospitalization or oxygen therapy, or mortality) up to day 28 among “high risk” patients. Key secondary endpoints: disease progression (all randomized patients) and time to recovery (high-risk and all randomized patients). Results Of 1315 patients randomized to regdanvimab or placebo, 880 were high risk (regdanvimab, n = 446;placebo, n = 434);the majority (regdanvimab, n = 371;placebo n = 381) were infected with alpha variant. The proportion with disease progression was lower (14/446 [3.1%;95% CI, 1.9–5.2] vs. 48/434 [11.1%;95% CI, 8.4–14.4];P < 0.001) and time to recovery was shorter (median, 9.27 days [95% CI, 8.27–11.05] vs. not reached [95% CI, 12.35–not calculable];P < 0.001) with regdanvimab than placebo. Consistent improvements were seen in all randomized and non–high-risk patients who received regdanvimab. Viral load reductions were more rapid with regdanvimab. Infusion-related reactions occurred in 11/1302 patients (4/652 [0.6%] regdanvimab, 7/650 [1.1%] placebo). Treatment-emergent serious adverse events were reported in 5/1302 patients (4 [0.6%] regdanvimab, 1 [0.2%] placebo). Conclusions Regdanvimab was an effective treatment for patients with mild-to-moderate COVID-19, significantly reducing disease progression and clinical recovery time without notable safety concerns prior to the emergence of the omicron variant. Trial registration ClinicalTrials.gov identifier, NCT04602000;EudraCT number, 2020-003369-20

3.
Open Forum Infect Dis ; 9(4): ofac053, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1806558

ABSTRACT

Background: Regdanvimab (CT-P59) is a monoclonal antibody with neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report on part 1 of a 2-part randomized, placebo-controlled, double-blind study for patients with mild-to-moderate coronavirus disease 2019 (COVID-19). Methods: Outpatients with mild-to-moderate COVID-19 received a single dose of regdanvimab 40 mg/kg (n = 100), regdanvimab 80 mg/kg (n = 103), or placebo (n = 104). The primary end points were time to negative conversion of SARS-CoV-2 from nasopharyngeal swab based on quantitative reverse transcription polymerase chain reaction (RT-qPCR) up to day 28 and time to clinical recovery up to day 14. Secondary end points included the proportion of patients requiring hospitalization, oxygen therapy, or mortality due to COVID-19. Results: Median (95% CI) time to negative conversion of RT-qPCR was 12.8 (9.0-12.9) days with regdanvimab 40 mg/kg, 11.9 (8.9-12.9) days with regdanvimab 80 mg/kg, and 12.9 (12.7-13.9) days with placebo. Median (95% CI) time to clinical recovery was 5.3 (4.0-6.8) days with regdanvimab 40 mg/kg, 6.2 (5.5-7.9) days with regdanvimab 80 mg/kg, and 8.8 (6.8-11.6) days with placebo. The proportion (95% CI) of patients requiring hospitalization or oxygen therapy was lower with regdanvimab 40 mg/kg (4.0% [1.6%-9.8%]) and regdanvimab 80 mg/kg (4.9% [2.1%-10.9%]) vs placebo (8.7% [4.6%-15.6%]). No serious treatment-emergent adverse events or deaths occurred. Conclusions: Regdanvimab showed a trend toward a minor decrease in time to negative conversion of RT-qPCR results compared with placebo and reduced the need for hospitalization and oxygen therapy in patients with mild-to-moderate COVID-19. Clinical trial registration : NCT04602000 and EudraCT 2020-003369-20.

4.
Toxics ; 9(12)2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1592920

ABSTRACT

Polyethylene glycol (PEG) is a polymer used for surface modification of important substances in the modern pharmaceutical industry and biopharmaceutical fields. Despite the many benefits of PEGylation, there is also the possibility that the application and exposure of the substance may cause adverse effects in the body, such as an immune response. Therefore, we aimed to evaluate the sensitization responses that could be induced through the intercomparison of nanomaterials of the PEG-coated group with the original group. We selected gold/silver nanomaterials (NMs) for original group and PEGylated silver/gold NMs in this study. First, we measured the physicochemical properties of the four NMs, such as size and zeta potential under various conditions. Additionally, we performed the test of the NM's sensitization potential using the KeratinoSens™ assay for in vitro test method and the LLNA: 5-bromo-2-deoxyuridine (BrdU)-FCM for in vivo test method. The results showed that PEGylated-NMs did not lead to skin sensitization according to OECD TG 442 (alternative test for skin sensitization). In addition, gold nanomaterial showed that cytotoxicity of PEGylated-AuNMs was lower than AuNMs. These results suggest the possibility that PEG coating does not induce an immune response in the skin tissue and can lower the cytotoxicity of nanomaterials.

5.
Clin Ther ; 43(10): 1706-1727, 2021 10.
Article in English | MEDLINE | ID: covidwho-1525737

ABSTRACT

PURPOSE: Neutralizing antibodies can reduce SARS-CoV-2 cellular entry, viral titers, and pathologic damage. CT-P59 (regdanvimab), a SARS-CoV-2 neutralizing monoclonal antibody, was examined in 2 randomized, double-blind, placebo-controlled, single ascending dose, Phase I studies. METHODS: In study 1.1, healthy adults were sequentially enrolled to receive CT-P59 10, 20, 40, or 80 mg/kg or placebo. In study 1.2, adult patients with mild SARS-CoV-2 infection were enrolled to receive CT-P59 20, 40, or 80 mg/kg or placebo. Primary objectives of both studies were safety and tolerability up to day 14 after infusion. Secondary end points included pharmacokinetic properties. Study 1.2 also measured virology and clinical efficacy. FINDINGS: Thirty-two individuals were randomized to study 1.1 (6 per CT-P59 dose cohort and 8 in the placebo cohort). By day 14 after infusion, adverse events (AEs) were reported in 2 individuals receiving CT-P59 20 mg/kg (headache and elevated C-reactive protein levels) and 1 receiving CT-P59 40 mg/kg (pyrexia) (all Common Terminology Criteria for Adverse Events grade 1). In study 1.2, 18 patients were randomized (5 per dose cohort and 3 in the placebo cohort). Sixteen AEs were reported in 10 patients receiving CT-P59. No AEs in either study led to study discontinuation. Greater reductions in viral titers were reported with CT-P59 than placebo in those with maximum titers >105 copies/mL. Mean time to recovery was 3.39 versus 5.25 days. IMPLICATIONS: CT-P59 exhibited a promising safety profile in healthy individuals and patients with mild SARS-CoV-2 infection, with potential antiviral and clinical efficacy in patients with mild SARS-CoV-2 infection. ClinicalTrials.gov identifier: NCT04525079 (study 1.1) and NCT04593641 (study 1.2).


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Carrier Proteins , Double-Blind Method , Humans , Immunoglobulin G
6.
Front Genet ; 12: 741175, 2021.
Article in English | MEDLINE | ID: covidwho-1506310

ABSTRACT

Recent preclinical studies show that Neuropilin-1 (NRP1), which is a transmembrane protein with roles in neuronal development, axonal outgrowth, and angiogenesis, also plays a role in the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Thus, we hypothesize that NRP1 may be upregulated in Alzheimer's disease (AD) patients and that a correlation between AD and SARS-CoV-2 NRP1-mediated infectivity may exist as angiotensin converting enzyme 2 (ACE2). We used an AD mouse model that mimics AD and performed high-throughput total RNA-seq with brain tissue and whole blood. For quantification of NRP1 in AD, brain tissues and blood were subjected to Western blotting and real-time quantitative PCR (RT-qPCR) analysis. In silico analysis for NRP1 expression in AD patients has been performed on human hippocampus data sets. Many cases of severe symptoms of COVID-19 are concentrated in an elderly group with complications such as diabetes, degenerative disease, and brain disorders. Total RNA-seq analysis showed that the Nrp1 gene was commonly overexpressed in the AD model. Similar to ACE2, the NRP1 protein is also strongly expressed in AD brain tissues. Interestingly, in silico analysis revealed that the level of expression for NRP1 was distinct at age and AD progression. Given that NRP1 is highly expressed in AD, it is important to understand and predict that NRP1 may be a risk factor for SARS-CoV-2 infection in AD patients. This supports the development of potential therapeutic drugs to reduce SARS-CoV-2 transmission.

SELECTION OF CITATIONS
SEARCH DETAIL